Например: определение ромба после изучения параллелограмма.
Кроме того, указанный метод используется:
1) при составлении “родословной” определения понятия:
Квадрат – это прямоугольник, у которого все стороны равны.
Прямоугольник – это параллелограмм, у которого все углы прямые.
Параллелограмм – это четырёхугольник, у которого противолежащие стороны параллельны.
Четырёхугольник – фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков.
Иначе говоря, родословная представляет собой цепочку понятий, построенных через обобщения предыдущего понятия, финалом которой является неопределяемое понятие (напомним, что в курсе школьной геометрии к таковым относятся точка, фигура, плоскость, расстояние (лежать между));
2) классификация;
3) применяется к доказательствам теорем и решению задач;
4) широко используется в процессе актуализации знаний.
Рассмотрим этот процесс, представленный системой задач:
а) Дан прямоугольный треугольник со сторонами 3см и 4см. Найти длину медианы, проведённой к гипотенузе.
б) Доказать, что медиана, проведённая из вершины прямого угла треугольника, равна половине гипотенузы.
в) Доказать, что в прямоугольном треугольнике биссектриса прямого угла делит пополам угол между медианой и высотой, проведёнными к гипотенузе.
г) На продолжении наибольшей стороны АС треугольника АВС отложен отрезок СМ, равный стороне ВС. Доказать, что АВМ тупой.
В большинстве случаев в школьном преподавании применяется конкретно-индуктивный способ. В частности, таким методом вводятся понятия в пропедевтических циклах начал алгебры и геометрии в 1-6 классах, причём многие определяющие понятия вводятся описательно, без строгих формулировок.
Незнание учителем различных методов введения определений приводит к формализму, который проявляется следующим образом:
а) учащиеся затрудняются применить определения в непривычной ситуации, хотя и помнят его формулировку.
Например: 1) считают функцию - чётной, т.к. “cos” – чётная;
2) - не понимают связь между монотонностью функции и решением неравенства, т.е. не могут применять соответствующие определения, в которых основной приём исследования состоит в оценке знака разности значений функции, т.е. в решении неравенства.
б) учащиеся обладают навыками решения задач какого-либо типа, но не могут объяснить, на основании каких определений, аксиом, теорем они выполняют те или иные преобразования.
Например: 1) - преобразовать согласно этой формуле и 2) представьте, что на столе – модель четырёхугольной пирамиды. Какой многоугольник будет основанием этой пирамиды, если модель положить на стол боковой гранью? (четырёхугольник).
Статьи по теме:
Методические аспекты национального воспитания
младших школьников
Рассмотрим средства национального воспитания. К ним относят пословицы, загадки, песни и сказки. Пословицы удовлетворяли многие духовные потребности трудящихся: познавательно-интеллектуальные (образов ...
Цели и содержание обучения математики
Цели и содержание математического образования зафиксированы в учебных программах, учебниках и учебных пособиях по математике. Постоянное развитие общества приводит к периодическому пересмотру целей и ...
Характеристика становления дополнительного образования в России
Дополнительное образование детей как неотъемлемая часть системы образования России приобрела системные характеристики в 90-х годах прошлого столетия. В соответствии с законом Российской Федерации «Об ...