Первое упоминание о школе встречается в древне египетских источниках за две с половиной тысячи лет до нашей эры, которая называлась дворцовой и обучались в ней жрецами дети царских сановников начаткам арифметики и геометрии. Греческие философы Платон (427-347 г. до н.э.) и Аристотель (384-332 г. до н.э.) разработали педагогическую систему обобщившую некоторый опыт. Римский педагог Квинтилиан (I в.н.э.) разработал основу дидактики (общей методики).
Чешский педагог Ян Анос Коменский (1592-1670 г.) расширил содержание школьного обучения новыми реальными предметами, разработал принципы наглядности, систематичности, прочности обучения, внес много нового в организацию учебной работы: учебный год, урок, текущий и годовой учет знаний, продолжительность учебного дня, твердое расписание уроков и т.д. в главном своем труде «Великая дидактика» Я. Коменский уделил внимание вопросам начального обучения арифметике.
Дидактика математики выделилась из педагогики в трудах швейцарского педагога Иоганна Генриха Песталоццы (1746-1827 г.), который в 1803 г. напечатал «Элементарные книги» – «Наглядное учение о числе» и «Азбука наглядности, или Наглядное обучение об измерении».
Зарождение дидактики математики в России связывается с появлением первого русского учебника арифметики Л.Ф. Магницкого (1703 г.), в котором впервые числа записывались арабскими цифрами, а не Славянскими буквами. Прототипами учебников по систематическим курсам арифметики и алгебры являются «Руководство к арифметике» Леонарда Эйлера (1707-1783) и «Универсальная арифметика». Н.Г. Курганов (ученик Магницкого) использовал конкретно-индуктивный метод в своих учебниках алгебры (1557 г.) и арифметики (1771 г.) и перевел на русский язык знаменитые «Начала» Евклида.
На рубеже XVIII-XIX в.в. академик С.Е. Гурьев выдвинул прогрессивную идею пропедевтических курсов математических дисциплин в школе и более строго, научного изложения. Создатели русской дидактики арифметики для Народной школы: Буссе Ф.И. «Руководство преподавания арифметики» (1830 г.) и Гурьев П.С. «Руководство к преподаванию арифметики малолетним детям» (1839 г.). Крупнейшие представители: Гольденберг А.И., Шохор-Троцкий С.И. (обучение через системы задач), Арженников К.П. и др.
Некоторые основы дидактики геометрии заложены Лобачевским Н.И., академиком Гурьевым С.Е., Осиповским Т.Ф., а первый большой труд посвященный преподаванию систематического курса, – «Материалы по методике геометрии» (1883 г.) принадлежат А.Н. Остроградскому.
Во второй половине XIX в. создаются основы дидактики алгебры, тригонометрия и начал анализа (Стралолюбский А.Н. Ермаков В.П.), Шереметевский В.П.
Система традиционной МПМ в СШ включала общую МПМ и пять частных методик: начального курса арифметики, систематических курсов арифметики, алгебры, геометрии и тригонометрии. В последних содержались конкретные методические рекомендации по изучению теоретических вопросов курса и решения задач и их называли «рецептурными». Общую МПМ называли теоретической и она рассматривала общие вопросы относящиеся к изучению любого математического предмета, как цели обучения математики, математические понятия и предложения, теоремы и их доказательства, задачи и их решения, методы и формы обучения и т.д.
Статьи по теме:
Программа практикума «Диагностика физического развития детей» и технология
руководства самостоятельной деятельностью студентов при его реализации
Пояснительная записка. Практикум «Диагностика физического развития детей» направлен на формирование самостоятельной работы студентов среднего специального учебного заведения. Включение данного практи ...
Характеристика средств обучения истории в современной
школе
Принцип наглядности обучения - это ориентация на использование в процессе обучения разнообразных средств наглядного представления соответствующей учебной информации. В современной дидактике утверждае ...
Диагностика уровня сформированности игровой деятельности у детей старшего
дошкольного возраста
Мы оценивали игровые умения, представленные в методике Н.Я. Михайленко: умение обыгрывать предметы, заменять реальные предметы условными, строить ролевое взаимодействия, использовать ролевой диалог, ...