Отметим, что развитие логического мышления непосредственно связано с процессом обучения математике. При этом многие исследователи отмечают, что одной из важнейших задач обучения, в том числе и математике, в школе является формирование у учащихся навыков осуществления логических операций, обучение их различным приемам логического мышления, вооружение знаниями логики и выработки у школьников умений и навыков использования этих знаний в учебной и практической деятельности.
В результате правильно организованного обучения математике школьники весьма быстро приобретают навыки логического мышления, в частности, умение обобщать, классифицировать и аргументированно обосновывать свои выводы.
Вместе с тем нет единого подхода к решению вопроса, как организовать такое обучение математике. Одни считают, что логические приемы являются неотъемлемой частью математики как науки, основы которой включены в содержание образования, поэтому у учащихся при изучении математики автоматически развивается логическое мышление на основе заданных образов (В.Г. Бейлинсон, Н.Н. Поспелов, М.Н. Скаткин).
Другой подход выражается во мнении части исследователей о том, что развитие логического мышления только через изучение учебных предметов, в том числе и математики, является малоэффективным, такой подход не обеспечивает полноценного усвоения приемов логического мышления и поэтому необходимы специальные учебные курсы по логике (Ю.И. Веринг, Н.И. Лифинцева, В.С. Нургалиев, В.Ф. Паламарчук).
Еще одна группа ученых (Д.Д. Зуев, В.В. Краевский) считают, что развитие логического мышления учащихся должно осуществляться на конкретном предметном содержании учебных дисциплин через акцентуацию, выявление и разъяснение встречающихся в них логических операций.
Но каков бы ни был подход к решению этого вопроса, большинство исследователей сходятся в том, что развивать логическое мышление в процессе обучения математике это значит: развивать у учащихся умение сравнивать наблюдаемые предметы, находить в них общие свойства и различия; вырабатывать умение выделять существенные свойства предметов и отвлекать (абстрагировать) их от второстепенных, несущественных; учить детей расчленять (анализировать) предмет на составные части в целях познания каждой составной части и соединять (синтезировать) расчлененные мысленно предметы в одно целое, познавая при этом взаимодействие частей и предмет как единое целое; учить школьников делать правильные выводы из наблюдений или фактов, уметь проверять эти выводы; прививать умение обобщать факты; развивать у учащихся умение убедительно доказывать истинность своих суждений и опровергать ложные умозаключения; следить за тем, чтобы мысли учащихся излагались определенно, последовательно, непротиворечиво, обоснованно.
Решение задач на построение, несомненно, развивает логическое и активное мышление учащихся. Ни одни задачи не содействуют так развитию в учениках наблюдательности и правильности мышления, представляя в то же время для них и наибольшую привлекательность, как геометрические (задачи) на построение.
Большое значение для развития логического мышления учащихся имеют и задачи на построение. Наличие анализа, доказательства и исследования при решении большинства таких задач показывает, что они представляют собой богатый материал для выработки у учащихся навыков правильно мыслить и логически рассуждать. При решении задач на построение они имеют дело не с конкретной, определенной фигурой, а должны создать необходимую фигуру, подвергающуюся различным изменениям в процессе решения. Вскрывая взаимосвязи между данными элементами, видим, как с изменением одних изменяются другие и даже вся фигура. Этим мы приучаем учащихся к диалектическому методу мышления и по возможности устраняем формализм в знаниях.
Трудно переоценить роль задач на построение в математическом развитии школьников. Они по своей постановке и методам решения не только наилучшим образом стимулируют накопление конкретных геометрических представлений, но и развивают способность отчетливо представлять себе ту или иную геометрическую фигуру и, более того, уметь мысленно оперировать элементами этой фигуры. Задачи на построение могут способствовать пониманию учащимися происхождения различных геометрических фигур, возможности их преобразования – все это является важной предпосылкой развития пространственного мышления школьников. Они сильно развивают логическое мышление, геометрическую интуицию.
Статьи по теме:
Раскрытие понятия «компьютерные программы», цели и задачи их
реализации
В последние годы всё чаще поднимается вопрос о применении новых информационных технологий в средней школе. Это не только новые технические средства, но и новые формы и методы преподавания, новый подх ...
Сенсомоторное развитие дошкольников
Прежде чем раскрыть значение сенсомоторного развития для детей старшего дошкольного возраста нам необходимо рассмотреть, что собой представляет сенсорное и моторное развитие детей. Сенсорное развитие ...
История отношения общества к умственно отсталым и социальная политика РФ в
отношении детей с ограниченными возможностями здоровья
На всех этапах своего развития человеческое общество проявляло внимание к людям, имеющим те или иные нарушения физических или психических качеств. Если такие лица оставались без внимания, это станови ...